Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 103: 117684, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493731

RESUMO

Glioblastoma multiforme (GBM) is a prevalent primary brain tumor. However, no specific therapeutic drug has been developed for it. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial transcription factor involved in the cellular response to oxidative stress. Numerous studies have demonstrated that Nrf2 plays a pivotal role in GBM angiogenesis, and inhibiting Nrf2 can significantly enhance patient prognosis. Using virtual screening technology, we examined our in-house library and identified pinosylvin as a potential compound with high activity. Pinosylvin exhibited robust hydrogen bond and Π-Π interaction with Nrf2. Cell experiments revealed that pinosylvin effectively reduced the proliferation of U87 tumor cells by regulating Nrf2 and demonstrated greater inhibitory activity than temozolomide. Consequently, we believe that this study will offer valuable guidance for the future development of highly efficient therapeutic drugs for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Fitoalexinas , Estilbenos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Fator 2 Relacionado a NF-E2 , Linhagem Celular Tumoral , Temozolomida , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia
2.
J Mater Chem B ; 11(39): 9404-9418, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37721092

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease among the elderly, and the morbidity increases with the aging population aggravation. The clinical symptoms of AD mainly include cognitive impairment and memory loss, which undoubtedly bring a huge burden to families and society. Currently, the drugs in clinical use only improve the symptoms of AD but do not cure or prevent the progression of the disease. Therefore, it is urgent for us to develop novel therapeutic strategies for effective AD treatment. To provide a better theoretical basis for exploring novel therapeutic strategies in future AD treatment, this review introduces the recent AD treatment technologies from three aspects, including nanoparticle (NP) based drug therapy, biological therapy and physical therapy. The nanoparticle-mediated therapeutic approaches at the nanomaterial-neural interface and biological system are described in detail, and in particular the magneto-regulated strategies by magnetic field actuating magnetic nanoparticles are highlighted. Promising application of magneto-mechanical force regulated strategy in future AD treatment is also addressed, which offer possibilities for the remote manipulation in a precise manner. In the future, it may be possible for physicians to realize a remote, precise and effective therapy for AD using magneto-mechanical force regulated technology based on the combination of magnetic nanoparticles and an external magnetic field.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/diagnóstico
3.
J Environ Sci (China) ; 115: 1-9, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34969439

RESUMO

Fe3O4-based materials are widely used for magnetic separation from wastewater. However, they often suffer from Fe-leaching behavior under acidic conditions, decreasing their activity and limiting sustainable practical applications. In this study, covalent organic frameworks (COFs) were used as the shell to protect the Fe3O4 core, and the Fe3O4@COF core-shell composites were synthesized for As(III) removal from acid wastewater. The imine-linked COFs can in situ grow on the surface of the Fe3O4 core layer by layer with [COFs/Fe3O4]mol ratio of up to 2:1. The Fe-leaching behavior was weakened over a wide pH range of 1-13. Moreover, such composites keep their magnetic characteristic, making them favorable for nanomaterial separation. As(III) batch adsorption experiments results indicated that, when COFs are used as the shell for the Fe3O4 core, a balance between As(III) removal efficiencies and the thickness of the COF shell exists. Higher As(III) removal efficiencies are obtained when the [COFs/Fe3O4]mol ratios were < 1.5:1, but thicker COF shells were not beneficial for As(III) removal. Such composites also exhibited better As(III) removal performances in the pH range of 1-7. Over a wide pH range, the zeta potential of Fe3O4@COF core-shell composites becomes more positive, which benefits the capture of negative arsenic ions. In addition, thinner surface COFs were favorable for mass transfer and facilitating the reaction of Fe and As elements. Our study highlights the promise of using COFs in nanomaterial surface protection and achieving As(III) depth removal under acidic conditions.


Assuntos
Estruturas Metalorgânicas , Fenômenos Magnéticos , Magnetismo , Extração em Fase Sólida , Águas Residuárias
4.
J Hazard Mater ; 403: 123940, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264987

RESUMO

Heavy metals existed as multiple types in wastewater, enhanced the difficulty for disposal, and aroused huge environmental issues. High selective adsorption of the most hazardous heavy metals is one important method for water purification and resource utilization. In this study, we assembled the [SnS4]4- clusters and MgFe-based layered double hydroxide (LDH) to synthesize the [SnS4]4-/LDH composites, to capture mercury and arsenic ions simultaneously. The results indicated that such composite exhibited excellent mercury and arsenic removal performance with higher than 99% removal efficiency at a wide pH range. The uptake of mercury was ascribed to the [SnS4]4- clusters sites while the arsenic removal was mainly due to the existence of Fe site in LDH composite. The inserted [SnS4]4- clusters can enlarge the surface areas and create a hierarchical pore channel due to the increased interlayer spacing of LDH, which can enhance the adsorption capacity. The different adsorption mechanisms were also indicated by dynamic analysis. Pseudo-second-order kinetic model was more suitable for both Hg(II) and As(III) adsorption in the dual-heavy metal solution, and neither Langmuir isotherm model nor Freundlich isotherm model fitted the Hg(II) and As(III) adsorption in the mixed solution. The adsorption progress was influenced due to the coexistence of another heavy metal. Besides, mercury can be collected from the spent materials using a thermal-heating method. Such composite exhibits promising potential for mercury recycling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA